J2E erythrocytic differentiation (EPO): Difference between revisions
From FANTOM5_SSTAR
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
[4] Ingley E. Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 2012; 64: 402-410.<br> | [4] Ingley E. Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 2012; 64: 402-410.<br> | ||
[5] Palis J. Primitive and definitive erythropoiesis in mammals. Frontiers in physiology 2014; 5: 3.<br> | [5] Palis J. Primitive and definitive erythropoiesis in mammals. Frontiers in physiology 2014; 5: 3.<br> | ||
|TCSample_description= | |TCSample_description='''J2E model of Erythocytic differentiation'''<br> | ||
|TCQuality_control= | <br> | ||
J2E cells are murine fetal liver cells that have been immortalised with the J2 retrovirus. J2E cells retain the capacity to respond to Epo by terminally differentiating and synthesizing hemoglobin6. The mouse J2E cell line responds to Epo by activating the JAK/STAT and ras/MAP kinase pathways7, as well as a novel Lyn-signaling cascade that we identified8. As a consequence of exposure to Epo, the cells undergo a burst of proliferation, followed by entry into the terminally differentiated state by synthesizing hemoglobin and changing morphologically9. These cells, therefore, provide a very good model for normal erythroid maturation in response to Epo.<br> | |||
J2E cells are maintained in DMEM (Gibco) 5% FCS (Bovogen Biologicals) at 370C and 5% CO2. Cell density is kept at 5-8 X105 cells/ml. Cells were induced with 5U/ml of Epo (Eprex®) (Jannsen). At least 1 X 107 cells were collected for RNA at 0min, 15min, 30min, 45min,1h, 1h 20min, 1h 40min, 2h, 2h 30min,3h, 3h 30min, 4h, 6h, 12h, 24h and 48h.<br> | |||
<br> | |||
'''Key marker for differentiation'''<br> | |||
Enumeration of benzidine positive cells, as an indication of hemoglobin synthesis, was carried out to monitor differentiation. The time course of Epo-induced differentiation of J2E cells shows that hemoglobin production increases markedly 24-48h after stimulation (Figure 1).<br> | |||
<br> | |||
<html><img src='https://fantom5-collaboration.gsc.riken.jp/resource_browser/images/TC_qc/J2E_Fig1.png'></html> | |||
Figure 1. Benzidine positive cells were enumerated at each time point. Three biological replicates were analysed.<br> | |||
|TCQuality_control=Expression of the following genes was assessed to determine the validity of this cell line as a model of Epo-induced erythroid differentiation (Figure 2). All these genes are required for normal erythroid differentiation.<br> | |||
<br> | |||
* Epor mediates epo-induced proliferation and differentiation [10]<br> | |||
* Alas2 is the rate limiting enzyme for the Heme biosynthesis pathway [11]<br> | |||
* Hbb-b1 hemoglobin, adult beta major chain required for oxygen transport [12]<br> | |||
* Gata-1 is an essential transcription factor for erythroid development [13, 14]<br> | |||
* Klf1 is a key transcriptional regulator for erythroid development [15]<br> | |||
* Nfe2 regulates erythroid maturation [16]<br> | |||
<br> | |||
<html><img src='https://fantom5-collaboration.gsc.riken.jp/resource_browser/images/TC_qc/J2E_Fig2.png' onclick='javascript:window.open("https://fantom5-collaboration.gsc.riken.jp/resource_browser/images/TC_qc/J2E_Fig2.png", "imgwindow", "width=768,height=785");' style='width:700px;cursor:pointer'/></html> | |||
Figure 2. Expression of key genes associated with erythroid differentiation. TPM: Tags per million.<br> | |||
}} | }} |
Revision as of 14:31, 11 December 2014
Series: | IN_VITRO DIFFERENTIATION SERIES |
---|---|
Species: | Mouse (Mus musculus) |
Genomic View: | Zenbu |
Expression table: | [{{{tet_config}}} FILE] |
Link to TET: | [{{{tet_file}}} TET] |
Sample providers : | Peter Klinken |
Germ layer: | {{{germ_layer}}} |
Primary cells or cell line: | {{{primary_cells}}} |
Time span: | {{{time_span}}} |
Number of time points: | {{{number_time_points}}} |
Overview |
---|
Erythropoietin (Epo) is the hormone, which regulates red blood cell production1. It is produced primarily in the kidney, and binds to Epo receptors (Epor) on the surface of immature erythroid cells in the bone marrow, thereby initiating the final stages of red cell maturation[1,2]. Following binding of Epo to its cognate receptor, a series of intracellular signaling cascades are activated, including stimulation of the JAK/STAT and ras/MAP kinase pathways[3,4]. This leads to enhanced cell division, followed by terminal differentiation which is characterized by the production of hemoglobin. In addition, morphological changes occur involving a reduction in cell size, nuclear condensation, and eventually extrusion of the nucleus to produce reticulocytes. Mature red blood cells (erythrocytes) containing large amounts of hemoglobin then circulate around the body transporting oxygen and carbon dioxide [5]. |
Sample description |
---|
J2E model of Erythocytic differentiation |
Quality control |
---|
Expression of the following genes was assessed to determine the validity of this cell line as a model of Epo-induced erythroid differentiation (Figure 2). All these genes are required for normal erythroid differentiation.
|
Profiled time course samples
Only samples that passed quality controls (Arner et al. 2015) are shown here. The entire set of samples are downloadable from FANTOM5 human / mouse samples
13063-139I3 | J2E erythroblastic leukemia response to erythropoietin | 00hr00min | biol_rep1 |
13064-139I4 | J2E erythroblastic leukemia response to erythropoietin | 00hr15min | biol_rep1 |
13065-139I5 | J2E erythroblastic leukemia response to erythropoietin | 00hr30min | biol_rep1 |
13066-139I6 | J2E erythroblastic leukemia response to erythropoietin | 00hr45min | biol_rep1 |
13067-139I7 | J2E erythroblastic leukemia response to erythropoietin | 01hr00min | biol_rep1 |
13068-139I8 | J2E erythroblastic leukemia response to erythropoietin | 01hr20min | biol_rep1 |
13069-139I9 | J2E erythroblastic leukemia response to erythropoietin | 01hr40min | biol_rep1 |
13070-140A1 | J2E erythroblastic leukemia response to erythropoietin | 02hr00min | biol_rep1 |
13071-140A2 | J2E erythroblastic leukemia response to erythropoietin | 02hr30min | biol_rep1 |
13072-140A3 | J2E erythroblastic leukemia response to erythropoietin | 03hr00min | biol_rep1 |
13073-140A4 | J2E erythroblastic leukemia response to erythropoietin | 03hr30min | biol_rep1 |
13074-140A5 | J2E erythroblastic leukemia response to erythropoietin | 04hr | biol_rep1 |
13075-140A6 | J2E erythroblastic leukemia response to erythropoietin | 06hr | biol_rep1 |
13076-140A7 | J2E erythroblastic leukemia response to erythropoietin | 12hr | biol_rep1 |
13077-140A8 | J2E erythroblastic leukemia response to erythropoietin | 24hr | biol_rep1 |
13078-140A9 | J2E erythroblastic leukemia response to erythropoietin | 48hr | biol_rep1 |
13129-140G6 | J2E erythroblastic leukemia response to erythropoietin | 00hr00min | biol_rep2 |
13130-140G7 | J2E erythroblastic leukemia response to erythropoietin | 00hr15min | biol_rep2 |
13132-140G9 | J2E erythroblastic leukemia response to erythropoietin | 00hr45min | biol_rep2 |
13133-140H1 | J2E erythroblastic leukemia response to erythropoietin | 01hr00min | biol_rep2 |
13134-140H2 | J2E erythroblastic leukemia response to erythropoietin | 01hr20min | biol_rep2 |
13135-140H3 | J2E erythroblastic leukemia response to erythropoietin | 01hr40min | biol_rep2 |
13136-140H4 | J2E erythroblastic leukemia response to erythropoietin | 02hr00min | biol_rep2 |
13137-140H5 | J2E erythroblastic leukemia response to erythropoietin | 02hr30min | biol_rep2 |
13138-140H6 | J2E erythroblastic leukemia response to erythropoietin | 03hr00min | biol_rep2 |
13139-140H7 | J2E erythroblastic leukemia response to erythropoietin | 03hr30min | biol_rep2 |
13140-140H8 | J2E erythroblastic leukemia response to erythropoietin | 04hr | biol_rep2 |
13141-140H9 | J2E erythroblastic leukemia response to erythropoietin | 06hr | biol_rep2 |
13142-140I1 | J2E erythroblastic leukemia response to erythropoietin | 12hr | biol_rep2 |
13143-140I2 | J2E erythroblastic leukemia response to erythropoietin | 24hr | biol_rep2 |
13144-140I3 | J2E erythroblastic leukemia response to erythropoietin | 48hr | biol_rep2 |
13195-141E9 | J2E erythroblastic leukemia response to erythropoietin | 00hr00min | biol rep3 |
13196-141F1 | J2E erythroblastic leukemia response to erythropoietin | 00hr15min | biol_rep3 |
13197-141F2 | J2E erythroblastic leukemia response to erythropoietin | 00hr30min | biol_rep3 |
13198-141F3 | J2E erythroblastic leukemia response to erythropoietin | 00hr45min | biol_rep3 |
13199-141F4 | J2E erythroblastic leukemia response to erythropoietin | 01hr00min | biol_rep3 |
13200-141F5 | J2E erythroblastic leukemia response to erythropoietin | 01hr20min | biol_rep3 |
13201-141F6 | J2E erythroblastic leukemia response to erythropoietin | 01hr40min | biol_rep3 |
13202-141F7 | J2E erythroblastic leukemia response to erythropoietin | 02hr00min | biol rep3 |
13203-141F8 | J2E erythroblastic leukemia response to erythropoietin | 02hr30min | biol_rep3 |
13204-141F9 | J2E erythroblastic leukemia response to erythropoietin | 03hr00min | biol_rep3 |
13205-141G1 | J2E erythroblastic leukemia response to erythropoietin | 03hr30min | biol_rep3 |
13206-141G2 | J2E erythroblastic leukemia response to erythropoietin | 04hr | biol_rep3 |
13207-141G3 | J2E erythroblastic leukemia response to erythropoietin | 06hr | biol_rep3 |
13208-141G4 | J2E erythroblastic leukemia response to erythropoietin | 12hr | biol_rep3 |
13209-141G5 | J2E erythroblastic leukemia response to erythropoietin | 24hr | biol_rep3 |
13210-141G6 | J2E erythroblastic leukemia response to erythropoietin | 48hr | biol_rep3 |